
Proceedings of the National Conference; INDIACom-2007 
Computing for Nation Development, February 23 – 24, 2007 

Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi 

 
A Flexible Discrete Software Reliability Growth Model With Change-Point 

 
P. K. KAPUR*    D. N. GOSWAMI# SUNIL K. KHATRI$        PRASHANT JOHRI+ 

* Department of Operational Research, University of Delhi, Delhi, pkkapur1@gmail.com 
# S.O.S in Computer Science, Jiwaji University, Gwalior-474011 

$Mother Teresa Institute of Management, Guru Gobind Singh Indraprastha University, Delhi, 
sunilkkhatri@gmail.com 

+Integrated Academy of Management and Technology, UP Technical University, johri.prashant@gmail.com 
 

 
ABSTRACT  
This paper presents a flexible discrete software reliability 
growth model (SRGM) and introduces the concept of change-
point in fault removal rate(FRR). Most of the discrete SRGMs 
discussed in the literature seldom consider the change in FRR. 
In real software development environment, the FRR need not 
be same throughout the testing process. Due to the complexity 
of the software system and the incomplete understanding of the 
software requirements, specifications and structure, the testing 
team may not be able to detect the failures at same rate. The 
model adopts the number of test occasions (cases) as a unit of 
fault detection (removal) period. The model has been validated, 
evaluated and compared by applying it on actual failure/fault 
removal data sets cited from real software development 
projects. The results show that the proposed model provides 
improved goodness of fit and predictive validity for software 
failure/fault removal data. 
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Acronyms 

SRGM  Software Reliability Growth Model 
NHPP  Non-homogeneous Poisson Process 
FRR  Fault Removal Rate   
MLE  Maximum Likelihood Estimate 
PGF                      Probability Generating Function. 
SSE  Sum of Squared Errors 
CP  Change-Point 
DS  Data Set 
RPE   The Relative Prediction Error 
 
11..          IInnttrroodduuccttiioonn    
 
Computer systems covers every aspect of our daily life. 
Although this had benefited the society but it has also made our 
lives more critically dependent on their correct functioning. 
Software reliability assessment is important to evaluate and 
predict the reliability and performance of software system. 
Several SRGMs have been developed in the literature to 
estimate the fault content and fault removal rate per fault in 

software[4,6]. Models have been developed under various sets 
of assumptions representing factors affecting the testing 
phase[4, 6, 11]. Goel and Okumoto [3] have proposed NHPP 
based SRGM assuming that the failure intensity is proportional 
to the number of faults remaining in the software. The model is 
very simple and can describe exponential failure curves. Ohba 
[13] refined the Goel-Okumoto model by assuming that the 
fault detection / removal rate increases with time and that there 
are two types of faults in the software. SRGM proposed by 
Bittanti et al. [1] and Kapur and Garg [7] have similar forms as 
that of Ohba [13] but are developed under different set of 
assumptions. Bittanti et al. [1] proposed an SRGM exploiting 
the fault removal (exposure) rate during the initial and final 
time epochs of testing. Whereas, Kapur and Garg [7] describe a 
fault removal phenomenon, where they assume that during a 
removal process of a fault some of the remaining faults may 
also be removed. These models can describe both exponential 
and S-shaped growth curves and therefore are termed as 
flexible models. 
 
NHPP based SRGMs are generally classified into two groups. 
The first group contains models, which use the execution time 
(i.e., CPU time) or calendar time. Such models are called 
continuous time models.  
 
The second group contains models, which use the test cases as 
a unit of fault removal period. Such models are called discrete 
time models, since the unit of software fault removal period is 
countable (Yamada et. al.[18], Inoue and Yamada [5]; Kapur 
et. al. [7]; Pham [14]; Musa [12]; Yamada et. al. [19]). A test 
case can be a single computer test run executed in an hour, day, 
week or even month. Therefore, it includes the computer test 
run and length of time spent to visually inspect the software 
source code. A large number of models have been developed in 
the first group while fewer are there in the second group due to 
the difficulties in terms of mathematical complexity involved.  

 
Lately attempts have been made to develop flexible discrete 
SRGMs. In this paper a discrete flexible SRGM is developed 
using Probability Generating Function (P.G.F) incorporating 
the concept of change-point. It is further shown, how 
continuous time SRGM can be derived from the discrete 
model.  
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The utility of discrete reliability growth models cannot be 
under estimated. As the software failure data sets are discrete, 
these models many times provide better fit than their 
continuous time counterparts. Therefore, in spite of difficulties 
in terms of mathematical complexity involved, discrete models 
are proposed regularly. Most of discrete models discussed in 
the literature seldom differentiate between the failure 
observation and fault removal processes. In real software 
development scene, the number of failure observed can be less 
than or more than the number of error removed.  Kapur and 
Garg [7] has discussed the first case in their Error removal 
phenomenon flexible model which shows as the testing grows 
and testing team gain experience, additional number of faults 
are removed without them causing any failure. But if the 
number of failure observed is more than the number of error 
removed then we are having the case of imperfect debugging. 
Flexible SRGM due to Kapur and Garg is able to capture 
exponential as well as S-shaped failure curve[9, 10]. 

 
Due to the complexity of the software system and the 
incomplete understanding of the software requirements, 
specifications and structure, the testing team may not be able to 
detect the faults at same rate. As the testing progresses, the 
FRR changes. The time at which FRR change is called change-
point. There can be multiple change-points in the testing 
process[15, 16, 20, 21]. 

 
In this paper, a flexible discrete SRGM incorporating change-
point concept has been proposed. The proposed model has been 
validated and evaluated on actual software failure/fault removal 
DS and compared with discrete version of KG model. The 
importance and utility of discrete time modeling have been 
highlighted. 
  
2.     Software Reliability Modeling  
 
2.1.   Model Development 
 
Most of the software reliability growth models assume that the 
fault removal phenomenon also describes the failure 
phenomenon. In reality this may not always be true. Fault, 
which is removed consequent to a failure, is known as a leading 
fault. While removing the leading faults, some other faults are 
removed which may have caused failure in future. These faults 
are known as dependent faults.  
 
Kapur and Garg [7] have described the above phenomenon in 
their SRGM based on the Non-homogeneous Poisson Process 
(NHPP). The mean value function of the failure phenomenon 
describes the removal process. 
 
2.2.   Model Assumptions 
 
The model developed below is based upon the following basic 
assumptions: 
 

1. Failure observation / fault removal phenomenon is 
modeled by NHPP. 

2. Software is subject to failures during execution caused 
by faults remaining in the software. 

3. On a failure, the fault causing that failure is 
immediately removed and no new faults are 
introduced i.e. fault removal process is perfect.. 

4. The expected number of faults removed between nth 
and (n+1)th case is proportional to the expected 
number of faults remaining. 

5. Faults present in the software are of two types: 
mutually independent and mutually dependent.  

6. The fault detection rate is proportional to the current 
fault content in the software and the proportionality 
increases linearly with each additional fault removal. 

 
2.3  Model Notations 
 
a Initial fault content of the software.  
b(n)        FRR function dependent on the number test cases 
mr(n) Mean number of faults removed by n number of test 
cases. 
β  A constant parameter in the FRR function. 
δ Constant time difference interval. 
c             Fault removal rate of additional removed faults. 
b1           FRR before CP 
b2           FRR after CP 
 
2.4  Model Formulation  
 
Under the above assumptions, the expected number of faults 
removed between nth and (n+1)th test case is proportional to the 
number of faults remaining after the execution of nth test run, 
satisfies the following difference equation:  
 
Under these assumptions the fault removal intensity per unit 
time can be written as: 
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The mathematical equation describing KG model can be 

rewritten as  
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Flexibility in KG model can be captured by proposing a  

logistic time dependent form for b(n), given by 
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Consequently, the model  takes the following form 
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Solving equation(5), using PGF under the initial condition mr 

(n=0) =0, we get the solution as 
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The structure of the model is flexible. The shape of the growth
curve is determined by the parameters b and c and can be eithe
exponential or S-shaped.  

 
r 

By substituting ( / )c bβ =  and replacing b by (b+c) we 
observe equation (6) is identical to the form given by Kapur 
and Garg. The S-shapedness in the cumulative curve is created 
by S-shaped b(n). 
 
FRR during testing may vary because of changes in testing 
skill, testing strategy and testing environment. As a 
consequence, fault removal rate before the change-point is 
different from the fault removal rate after change-point.: 
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where 1η  is the change-point. 
 

Case 1:    ( ) 1n0 η<≤

Solving the difference equation (7) substituting b(n) from (8), 
using the probability generating function under the initial 
condition at n = 0, m(n ) = 0,  we get 
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Case 2:  ( ) 1n η≥

Solving the difference equation (7) substituting b(n) from (9), 
using the probability generating function with the initial 
condition at n = 1η , mr(n ) = mr( ), we get 1η
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3.   Estimation of Parameters 
 
Parameters estimation is of primary concern in software 
reliability prediction. For this, the failure data is collected and 
is recorded in either of the following two formats-the first 
approach is to record the time between successive failures 
while second way is to collect the number of failures 
experienced at regular testing intervals. If failure data is 
available then the values of the unknown parameters can be 
estimated by using either maximum Likelihood Method or by 
using the technique of least square method. The brief 
description of these two techniques is: 
 
Maximum Likelihood Method: The MLE procedure when the 
failure data is given in the form (ni ,xi), i=1,2,3…k, where xi is 
the cumulative number of faults removed by ni test cases (0< n1 
< n2 <…< nk) and ni is the accumulated test runs spent to 
remove xi faults. The Likelihood function L is given as: 
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The MLE of the parameters of SRGMs can be obtained by 
maximizing L with respect to the model parameters. 
 Least square method: In this method, the sum of square of the 
difference between observed value and the value estimated by 
the model is minimized. If the failure data consists of  k pairs 
of sample values (ni ,xi), i=1,2,3…k, where xi is the cumulative 
number of faults removed by ni test cases (0< n1 < n2 <…< nk) 
and ni is the accumulated test runs spent to remove xi faults. Let 
the estimated value of the number of faults removed by ni test 
cases be . Then parameter estimation by least square 
method consists of minimizing the sum of squares of the 
deviation between actual and estimated values i.e.   
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Bayesian Analysis: When no failure data or very small amount 
of the failure data is available then it is not possible to estimate 
the values of the parameters by using above two specified 
techniques. In such case, the parameters are not assumed to be 
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fixed at some unknown value, but they are assumed to follow 
some probability distribution, known as prior distribution. 
Given the software reliability model and the assumption about 
the distribution of the model parameters, it is possible to obtain 
the distribution of random variable (known as posterior 
distribution) and its expected value i.e. mean value 
function.  

)(nN
)(nm

 
3.1 Parameter Estimation for the proposed model 
 
In this paper, the maximum likelihood method is used to 
estimate the parameters (a0, b0, p, α, β) of the proposed model. 
Since the DS used in this paper are given in the form of pairs 
(ni ,xi), i=1,2,3…k, where xi is the cumulative number of faults 
removed by ni test cases (0< n1 < n2 <…< nk) and ni is the 
accumulated test runs spent to remove xi faults. The Likelihood 
function L is given as: 

( ) [ ]
∏
=

−

−

−
−

−
−

=
−k

i

nm

ii

xx
ii

ii
k

ii

e
xx
nmnm

xnParametersL
1

)(

1

1

)!(
)()(

),(|
1

            

           …  (12) 
The likelihood function or the log Likelihood function of 

(12) can be maximized with respect to the parameters to find 
their estimates. Following constraints can also be used: a0>0, 
0<b0<1, 0<p≤1, α≥0, β≥ 0.  

 
Taking natural logarithm of (12) we get: 
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         …  (13) 
The MLE of the parameters of SRGMs can be obtained by 

maximizing (12) or (13) with respect to the model parameters.  
 
 
4.     Model Validation 
  
To check the validity of the proposed model to describe the 
software reliability growth, it has been tested on two DS. The 
DS-I is cited from (Woods [17]) in which 100 faults were 
detected after testing for 20 weeks. Change-point is taken at . 
The DS-II is cited from (Brooks and Motley [2]) in which 1301 
faults were detected after testing for 35 months.  Change-point 
is taken at  
 
4.1.   Model Evaluation 
The performance of SRGM is judged by their ability to fit the past 
software failure occurrence / fault removal data and to predict 
satisfactorily the future behavior of the software failure 
occurrence/fault removal process (Musa et al. [12], Kapur et al. 
[8]). Therefore, we use two types of comparison criteria: 

1. The Goodness of Fit Criteria. 
2. The Predictive Validity Criterion. 

 
4.2.  The Goodness of Fit Criteria 
 
The Sum of Squared Error (SSE): SSE measures the distance of 
a model estimate value from the actual data, as follows: 

( )∑
=

−=
k

i
ii xnmSSE

1

2)(ˆ                …  (14) 

Where k  is the number of observations, is the 

estimated cumulative number of failures by test case 
obtained from the fitted mean value function (i.e., SRGM), and 

is the total number of failures observed by test cases. 
Lower value of SSE indicates less fitting error, thus better 
goodness of fit.  

)(ˆ inm

in

ix in

 
The smaller the metric value the better the model fits relative to 
other models run on the same DS. 
 
R Squared (R2): Goodness-of-fit measure of a linear model, 
sometimes called the coefficient of determination. It is the 
proportion of variation in the dependent variable explained by 
the regression model. It ranges in value from 0 to 1. Small 
values indicate that the model does not fit the data well. 
 
4.3. The Predictive Validity Criterion 
 
Predictive validity is defined as the ability of the model to 
determine the future failure behavior from present and past 
failure behavior. This criterion was proposed by Musa et al. 
[12]. Suppose  be the last test case,  is number of faults 

detected during the interval , and  is the estimated 

value of the mean value function  at , which is 
determined using the actually observed data up to an arbitrary 
test case 

kn kx
],0( kn )(ˆ knm

)(nmr kn

)0( kee nnn ≤< , in which  denotes the testing 

progress ratio. In other words, the number of failures by  can 
be predicted by the SRGM and then compared with the actually 
observed number . The difference between the predicted value 

 and the reported value  measures the prediction fault. 

The ratio 

)/( ke nn

kn

kx
)(ˆ knm kx

( ){ }kkk xxnm /)(ˆ −  is called Relative Prediction Error 
(RPE). If the RPE value is negative / positive the SRGM is said 
to underestimate / overestimate the future failure phenomenon. A 
value close to zero for RPE indicates more accurate prediction, 
thus more confidence in the model and better predictive validity. 
The value of RPE is said to be acceptable if it is within± (10%) 
(Kapur et al. [8]). 
 
5.    Data Analysis And Model Comparison   
5.1 Goodness of Fit Analysis  
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Using MLE method, the estimation values of the model 
parameters for both DS are given in table 1. The fitting of the 
model to both DS is graphically illustrated in figures 1-4. It is 
clearly seen from the figures that the model fits both DS 
excellently. Comparison of the proposed model and other well-
documented discrete SRGM due to Kapur et al. [8] based on 
NHPP in terms of goodness of fit for both DS has been worked 
out. The results are presented in table 2. It is clearly seen from 
the tables that the proposed model is better under comparison 
in terms of MSE and  R2.   
  
5.2  Predictive Validity Analysis 
All the DS are truncated into different proportions and used to 
estimate the parameters of the proposed model. For each 
truncation, one value of RPE is obtained and given in tables 3 
& 4. The tables give the results of the predictive validity. It is 
observed that the predictive validity of the model varies from 
one truncation to another. It is clearly seen from table 4 that 
60% of the total test runs is sufficient to predict the future 
reasonably and from the table 3 that 70% of the total test runs 
is sufficient to predict the future reasonably.  
 
5.3   Estimation Results 

Table 1: 
Parameter Estimation Models under 

Comparisons a β b b1 b2 
Discrete  

K-G 
Model 

109.73   1.4107    .1667    ----- ----- DS-I 
(Pham-

Tandem) 
100 

Faults 

Proposed 
Model 
with 

Change-
Point 

104.49   5.0583   ----- .2467   .2341   

Discrete  
K-G 

Model 
1331.05   20.1629   .1817    ----- ----- DS – II 

(Brooks-
DS2) 
1301 

Faults 

Proposed 
Model 
with 

Change-
Point 

1321.89   25.3379   ----- .1946   .1909   

 
Table 2: 

Comparison Criteria Models under 
Comparisons R2 MSE Bias Variatio

n 
RMSPE 

Discrete  
K-G Model .9923 6.505 0.546 9.212 9.2285 DS-I 

(Pham
-

Tande
m) 
100 

Faults 

Proposed 
Model with 

Change-
Point 

.9964 3.053 0.250 2.403 2.4165 

Discrete  
K-G Model 

 
.9990 

 
203.7 2.146 14.319 14.479 DS – II 

(Brook
s-DS2) 
1301 

Faults 

Proposed 
Model with 

Change-
Point 

.9993 149.5
1 

5.9E-
7 12.4063 12.406 

Table 3:  (Predictive Validity on DS-I) 
Model (ne/nk) m(nk) RPE 

100% 101.7977 1.7977 
95% 101.9674 1.9674 
90% 102.6314 2.6314 
80% 104.1919 4.1919 
70% 106.4687 6.4687 

 
 

Proposed 
Model 

60% 117.7655 17.7655 
 
Table 4: (Predictive Validity on DS-II) 

Model (ne/nk) m(nk) RPE 
100% 1301.6070 0.0466 
95% 1303.5930 0.1933 
90% 1305.5010 0.3459 
80% 1312.7177 0.9006 
70% 1350.3480 3.7930 

 
 

Proposed 
Model 

60% 1430.7331 9.9717 

 
6.4.  Goodness of Fit Curves for Datasets   
The goodness of fit for the proposed model corresponding to 
datasets DS-I and DS-II is graphically presented in Figures 1-4 
.  The graphs have been plotted between actual and estimated 
values for the cumulative number of faults for the two data sets 
under consideration. The curves show excellent fit for the 
proposed model with the estimated values very near to 
observed failure data.  
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Fig. 1 Goodness-of-Fit  on  DS-I  without  CP 
 

Goodness-of-Fit on DS1 with CP
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Fig. 2 Goodness-of-Fit  on  DS-I  with  CP 
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Goodness-of-Fit on DS-III without CP
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Fig. 3 Goodness-of-Fit  on  DS-II  without  CP 
 
 

Goodness-of-Fit on DS-III with CP
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Fig. 4 Goodness-of-Fit  on  DS-II  with  CP 
 
7.    Conclusion 
While testing the software under consideration, fault detection 
rate is normally assumed to be constant. Whereas, in practice, 
detection rate varies because of change in testing skill, system 
environment and testing strategy. Several questions arise - Had 
a change occurred?  Had more than one change occurred?  
When did the change occur?  These questions can be answered 
by performing a change-point analysis.  A change-point 
analysis is capable of detecting changes.  Change-point 
characterizes the changes and controls the overall error rate. 
 
In this paper, a flexible discrete SRGM incorporating change-
point concept has been presented. The proposed model 
considers that during software testing, FRR does not remain 
constant. The introduction of change factor in FRR helps in 
better predictability and more accuracy. The model has been 
validated, evaluated, and compared with discrete version of  
Kapur et al. model by applying it on two DS. The results show 
that the proposed model provides improved goodness of fit and 
predictive validity for software failure occurrence / fault 
removal data due to its applicability and flexibility.  
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